Machine Learning Enhanced Boundary Element Method: Prediction of Gaussian Quadrature Points

نویسندگان

چکیده

This paper applies a machine learning technique to find general and efficient numerical integration scheme for boundary element methods. A model based on the neural network multi-classification algorithm is constructed minimum number of Gaussian quadrature points satisfying given accuracy. The trained by using large amount data calculated in traditional method optimal architecture selected. two-dimensional potential problem circular structure tested analyzed determined model, accuracy about 90%. Finally, incorporating predicted into analysis, we that solution analytical are good agreement, which verifies robustness proposed method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensionality-Reducing Expansion, Boundary Type Quadrature Formulas, and the Boundary Element Method

This paper discusses the connection between boundary quadrature formulas constructed by using solutions of partial differential equations and boundary element schemes. AMS Subject Classfication: 65D30, 65D32, 65N38.

متن کامل

Generalized Gaussian Quadrature Rules in Enriched Finite Element Methods

In this paper, we present new Gaussian integration schemes for the efficient and accurate evaluation of weak form integrals that arise in enriched finite element methods. For discontinuous functions we present an algorithm for the construction of Gauss-like quadrature rules over arbitrarily-shaped elements without partitioning. In case of singular integrands, we introduce a new polar transforma...

متن کامل

Generalized Gaussian Quadrature Rules for Discontinuities and Crack Singularities in the Extended Finite Element Method

New Gaussian integration schemes are presented for the efficient and accurate evaluation of weak form integrals in the extended finite element method. For discontinuous functions, we construct Gauss-like quadrature rules over arbitrarily-shaped elements in two dimensions without the need for partitioning the finite element. A point elimination algorithm is used in the construction of the quadra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cmes-computer Modeling in Engineering & Sciences

سال: 2022

ISSN: ['1526-1492', '1526-1506']

DOI: https://doi.org/10.32604/cmes.2022.018519